Device Helps Access Tablets

Photo: Access4Kids - device

Ayanna Howard, professor of electrical and computer engineering, and graduate student Hae Won Park have created Access4Kids, a wireless input device that uses a sensor system to translate physical movements into fine-motor gestures to control a tablet.

The device, coupled with supporting open-source apps and software developed at Georgia Tech, allows children with fine motor impairments to access off-the-shelf apps such as Facebook and YouTube, as well as custom-made apps for therapy and science education.

“Every child wants access to tablet technology. So to say, ‘No you cannot use it because you have a physical limitation’ is totally unfair,” Howard said. “We are giving them the ability to use what’s in their mind so they have an outlet to impact the world.”

The current prototype of the Access4Kids device includes three force-sensitive resistors that measure pressure and convert it into a signal that instructs the tablet. A child can wear the device around the forearm or place it on the arm of a wheelchair and hit the sensors or swipe across the sensors with his or her fist. The combination of sensor hits or swipes gets converted to different “touch-based” commands on the tablet.

Children with neurological disorders such as cerebral palsy, traumatic brain injury, spina bifida and muscular dystrophy typically suffer from fine motor impairments, which is the difficulty of controlling small coordinated movements of the hands, wrists and fingers. They tend to lack the ability to touch a specific small region with appropriate intensity and timing needed for press and swipe gestures.

The impact of Access4Kids could be significant. More than 200,000 children in the U.S. public school system have an orthopedic disability and have been excluded from tablet and touch screen devices. Current assistive technology, such as Augmentative and Alternative Communication devices, is available to those with motor impairments for traditional computer platforms but not tablets or smartphones.

“We cannot keep it in the lab,” Howard said. “It does not make sense for me to have one child, one at a time look at it and say ‘Hey that is really cool’ and not have it out there in the world. The real goal is to make it safe and efficient so someone can make it into a commercial product.”

COMPAMED.de; Source: Georgia Tech