First Synthetic Nanoscale Fractal

Photo: Image of man-made fractal molecule

The molecule, developed by researchers at the University of Akron, Ohio University and Clemson University, eventually could lead to new types of photoelectric cells, molecular batteries and energy storage, according to the scientists.

A University of Akron research team led by Vice President for Research George Newkome used molecular self-assembly techniques to synthesize the molecule in the laboratory. The molecule, bound with ions of iron and ruthenium, forms a hexagonal gasket.

Ohio University physicists Saw-Wai Hla and Violeta Iancu, who specialize in imaging objects at the nanoscale, confirmed the creation of the man-made fractal. To capture the image, the physicists sprayed the molecules onto a piece of gold, chilled them to minus 449 degrees Fahrenheit to keep them stable, and then viewed them with a scanning tunneling microscope. The objects are 12 nanometers wide. “That’s big for a nanoscale molecule. It’s huge,” said Hla, an associate professor of physics and astronomy.

“This man-made structure is one of the first nanoscale, non-branched fractal molecules ever produced,” said Newkome. “Blending mathematics, art and science, these nanoscopic hexagonal-shaped materials can be self-assembled and resemble a fine bead necklace. These precise polymers may provide an entrée into novel new types of photoelectric cells, molecular batteries and energy storage.”

Fractals are irregular curves or shapes that retain the same pattern when reduced or magnified. The molecule in the study, for example, is composed of six rings, which are made up of six smaller rings, and so on, Hla explained. Snowflakes, broccoli florets or tree bark would be just a few examples from nature.; Source: Ohio University