From Aircraft to Heart Implants

Graphic: A heart and the shadow of a plane

The researchers from Italy, Germany and Greece have optimised a Particle Image Velocimetry (PIV) system of the kind traditionally used to improve the aerodynamics of aircraft wings to make it capable of accurately measuring the effects of medical implants on blood flow. On the one hand their work will allow medical device manufacturers to improve the design of devices such as heart valves and pumps, while on the other it will provide doctors with a way to detect – and ultimately correct - the side-effects that commonly afflict patients who receive implants.

“This system is likely to have a significant impact on the heart device market over the coming years. In fact, it could revolutionise heart treatments,” says Fabrizio Lagasco, the coordinator of the IST programme-funded SMART-PIV project.

The SMART-PIV system - which combines the optimised PIV hardware with advanced image processing and numerical analysis software over a parallel computing subsystem - fills a gap in the heart device sector that has limited the efficiency of implants.

At the core of the project’s PIV system is miniaturised optical sensor technology using ultra-thin laser light sheets to capture images of the fluid dynamics of blood flowing through implanted devices. Numerical analysis is carried out on the images in a parallel computing subsystem allowing device designers or doctors to detect problems with the blood flow, such as high velocity gradients that can cause blood cell damage, or low velocity that could lead to thrombosis or coagulation.; Source: IST Results