Gets on Your Nerves much Longer

Photo: A small battery

The lithium battery is the workhorse in implantable devices - stimulators used to jump start the heart and help the central nervous system make critical connections in, for example, Parkinson's and epilepsy patients. But lithium batteries don't last forever and new surgery to maintain many devices seeded into the body is required, as it is to replace batteries and devices at the end of their lives. Moreover, a new generation of tiny electrical devices to stimulate the nervous system, treat incontinence and overcome muscular impairment is coming on line as scientists and engineers continue to shrink the components that make up the devices.

Central to that ability, according to University of Wisconsin-Madison Professor Emeritus of chemistry Robert West, is new lithium battery technology. Using organosilicon compounds, West and his UW-Madison colleagues have developed rechargeable lithium ion batteries whose lifetimes are more than twice as long as the batteries now used in tiny medical devices.

"It turns out the organosilicon compounds are really good for improving lithium battery technology," says West, whose new battery technology powers a "microstimulater" not much larger than a pencil lead and that can be injected near target nerves to help overcome the faulty nervous system wiring at the heart of Parkinson's, epilepsy and incontinence.

West's group developed the electrolyte, the electricity-conducting liquid that is the heart of the battery. The new organosilicon compounds developed by the Wisconsin chemists, says West, have numerous advantages over traditional lithium battery chemistry. A critical advantage of the new battery technology is lifespan: "If you're going to implant these things, you want a (battery) lifetime of at least 10 years," says West, whose organosilicon batteries are projected to power the tiny implantable devices for more than 12 years.

COMPAMED.de; Source: University of Wisconsin-Madison