Helping Damaged Bone Regenerate

The specially fabricated glass, like the spongy interior of bone, contains interconnected pores that facilitate vascularization, the production of bone cells and the flow of blood and nutrients to all areas of the diseased or damaged bone.

The glass is porous at two scales, containing nanopores that measure up to 20 nanometers in diameter and macropores measuring 100 microns or wider. One nm equals one one-billionth of a meter, while one micron equals one one-millionth of a meter. The dual porosity and the pores' interconnectedness, say the researchers, enable the glass to mimic bone's two vital functions. The nanopores facilitate cell adhesion and crystallization of bone's structural components. The macropores allow bone cells to grow inside the glass and to vascularize, or form new blood vessels and tissue.

Himanshu Jain, director of the Lehigh-based International Materials Institute for New Functionalities in Glass notes that the ideal treatment for diseased or damaged bone is to coax the body's natural bone tissue to regrow. Doctors have learned to do this by taking a bone graft from one part of a person's body and using it as a "scaffold" to stimulate bone tissue elsewhere to regrow. Likewise, biocompatible glasses have been used as bone transplants.

Until now, however, no one has succeeded in using glass as a bone scaffold. The Lehigh-led research team says dual porosity will help its glass behave as an effective scaffold for bone regrowth. "The aim of our project was to create nano- and macroporosity in a bioactive material while achieving mechanical properties that match those of bone," says Ana Marques, a research scientist at the Instituto Superior Tecnico who used a variation of a wet-chemistry technique to prepare the dually porous glass.

COMPAMED.de; Source: Lehigh University

 
 


The specially fabricated glass, like the spongy interior of bone, contains interconnected pores that facilitate vascularization, the production of bone cells and the flow of blood and nutrients to all areas of the diseased or damaged bone.

The glass is porous at two scales, containing nanopores that measure up to 20 nanometers in diameter and macropores measuring 100 microns or wider. One nm equals one one-billionth of a meter, while one micron equals one one-millionth of a meter. The dual porosity and the pores' interconnectedness, say the researchers, enable the glass to mimic bone's two vital functions. The nanopores facilitate cell adhesion and crystallization of bone's structural components. The macropores allow bone cells to grow inside the glass and to vascularize, or form new blood vessels and tissue.

Himanshu Jain, director of the Lehigh-based International Materials Institute for New Functionalities in Glass notes that the ideal treatment for diseased or damaged bone is to coax the body's natural bone tissue to regrow. Doctors have learned to do this by taking a bone graft from one part of a person's body and using it as a "scaffold" to stimulate bone tissue elsewhere to regrow. Likewise, biocompatible glasses have been used as bone transplants.

Until now, however, no one has succeeded in using glass as a bone scaffold. The Lehigh-led research team says dual porosity will help its glass behave as an effective scaffold for bone regrowth. "The aim of our project was to create nano- and macroporosity in a bioactive material while achieving mechanical properties that match those of bone," says Ana Marques, a research scientist at the Instituto Superior Tecnico who used a variation of a wet-chemistry technique to prepare the dually porous glass.

MEDICA.de; Source: Lehigh University