Low-Energy Defibrillation Method to Control Cardiac Fibrillation

Photo: Cardiac fibrillation on the surface of heart

An international team of scientists from the Max-Planck-Institute for Dynamics and Self-Organization (Göttingen, Germany), Cornell University (Ithaca, New York) the Ecole Normale Supérieure de Lyon (France), the University Medicine Göttingen (Germany), the Rochester Institute of Technology (USA), and the Institut Non-Linéaire de Nice (France) have developed a new low-energy method for terminating life-threatening cardiac fibrillation of the heart.

For patients suffering from chronic atrial fibrillation there is one reliable solution: a defibrillation. A strong electric pulse, which patients perceive as painful and which can damage the surrounding tissue forces the heart back into its regular beating. The international team of scientists led by Stefan Luther from the Max Planck Institute and Flavio Fenton from Cornell University has proposed a new method. Using a cardiac catheter the researchers create a sequence of five weak electrical signals in the heart. "Only a few seconds later, the heart beats regularly again", says Luther describing the team’s newest results.

Even though LEAP and standard defibrillation seem to work similarly at first sight, they initiate completely different processes within the heart. "The classic defibrillator works by using a very strong electric field that excites all cells of the organ. In contrast, LEAP uses low-energy pulses to synchronize the tissue", says Fenton. For a short moment they can no longer transmit any electrical signals; the chaotic activity is terminated. "Afterwards, the heart resumes its normal, regular beating. The situation can be compared to turning a malfunctioning computer off and on again," says Robert Gilmour from Cornell University.

The new method terminates the turbulent electric activity within the heart step by step. "Our most important allies are natural heterogeneities within the heart such as blood vessels, fatty tissue or fibrotic tissue", says Eberhard Bodenschatz from the Max Planck Institute.

COMPAMED.de; Source: The Max Planck Society