Medical Micropump Should Aid Development

"The purpose of this micropump is to make it easier for people to receive the results of medical tests when they are in the doctor's office rather than waiting a couple of days or weeks," says bioengineering graduate student Mark Eddings. "It also might deliver pain medication or other drugs through a device attached to the skin."

Bruce Gale, an assistant professor of mechanical engineering at the University of Utah, says an inexpensive, portable and easy-to-manufacture pump should aid development of a lab-on-a-chip, in which "we take all the components that would fill a room in a medical lab and put them all down on a chip the size of a credit card."

While a lab-on-a-chip would have hundreds to thousands of micropumps – sets of tiny fluid and air channels and larger chambers in which samples were tested – Eddings and Gale demonstrated their invention by building an array of 10 of the tiny pumps.

They molded tube-like "microchannels" – each the width of a human hair – into the top and bottom layers of a three-layered piece of silicone polymer material (polydimethylsiloxane , PDMS) about the size of a deck of playing cards. "It's made out of bathroom caulk," Gale quips. "It is very similar to the clear silicones you'd use to seal your bathtub."

The card deck-sized array has three layers of rubbery PDMS:

The air pressure or vacuum, respectively, push or pull air through channels in the bottom layer, transmitting pressure or suction through the middle-layer membrane to push or draw fluids through channels in the upper layer.

While an outside air pump or vacuum is needed to run the device, Gale says the membrane is, in effect, the pump because a pump creates a pressure difference, which is what the membrane does to move fluids.

Because gas, not fluid, flows through the middle layer, liquid in the upper-layer microchannels can flow into and fill dead-end channels or chambers without trapping air. That allows the pump to carry samples like blood or fluids with protein or DNA through the microchannels to dead-end chambers that contain chemicals needed for a test.

The outside device to run the lab-on-a-chip – including air pressure or a vacuum to run the micropumps – "would be as big your wallet, and the chip would be like a credit card that goes in your wallet," Gale says. Each micropump can produce a flow of up to 200 nanoliters of fluid per minute.; Source: University of Utah