Microscopic Scaffolding Offers a ‘Simple’ Solution

This ultra-fine, 3-dimensional scaffold, which is made from specially developed polymers, looks similar to tissue paper but has fibres 100 times finer. Before it is placed over a wound, the patient’s skin cells are introduced and attach themselves to the scaffold, multiplying until they eventually grow over it. When placed over the wound, the scaffold dissolves harmlessly over six to eight weeks, leaving the patient’s skin cells behind.

This new approach to skin reconstruction has been developed by a team of chemists, materials scientists and tissue engineers at the University of Sheffield. It is designed primarily for cases involving extensive burns where surgeons are unable to take enough skin grafts from elsewhere on the body to cover the damaged areas. Currently, bovine collagen or skin from human donors is used in these cases, but these approaches have potential health and rejection risks.

“Simplicity is the key,” says Professor Tony Ryan, who is leading the team. “Previous attempts to find better ways of encouraging skin cell growth have used chemical additives and other elaborate techniques to produce scaffolds, but their success has been limited. We’ve found that skin cells are actually very ‘smart’ – it’s in their DNA to sort themselves into the right arrangement. They just need a comparatively uncomplicated scaffold (and each other) to help them grow in a safe, natural way.”

The next step in the research is to develop the skin reconstruction technology for clinical use, hopefully in the next few years. The technology also offers possibilities for testing the toxicity of cosmetic and similar products, using materials grown in the laboratory that closely resemble natural skin.

COMPAMED.de; Source: Engineering and Physical Sciences Research Council