Predicting the Outcome of Child Heart Surgery

Picture: A child's pulmonary artery

With a better understanding of each child’s unique heart defect, surgeons could greatly improve the likelihood that children with complex defects requiring multiple surgeries over a period of several years could have smoother recoveries and an improved quality of life after their operations.

The technology, known as image-based surgical planning creates a three-dimensional model of the child’s heart with data from the child’s magnetic resonance imaging (MRI) scans at different times in the cardiac cycle, also called a 4-D MRI. The models allow surgeons to visualize the direction of blood flow and determine any energy loss in the heart. So if a surgeon were planning a certain correction to an area of a child’s heart, a model created by the system would show the surgeon how well blood would flow through the newly configured heart.

“We use the MRI images and time data to create models of these children’s vascular systems and hearts to simulate how they currently work and how they could work after surgery,” said Ajit Yoganathan, Ph.D., a co-principal investigator on the project and associate chair of the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “The goal is to improve the quality of life for these children by understanding their current physiology and finding the best way to optimize the surgery for that particular child.”

After a less-than-optimal operation, children sometimes experience a reduced capacity to perform physical activities and may experience blood clotting and ventricle arrhythmias. The Georgia Tech/Emory surgery planning system could eliminate the need for additional surgeries by optimizing early surgeries.; Quelle: Georgia Institute of Technology