Robot Biologist Solves Complex Problem from Scratch

Photo: Graphic of a robot in a laboratory

The work was a collaboration between John P. Wikswo, the Gordon A. Cain University Professor at Vanderbilt, Michael Schmidt and Hod Lipson at the Creative Machines Lab at Cornell University and Jerry Jenkins and Ravishankar Vallabhajosyula at CFDRC in Huntsville, Ala.

The “brains” of the system, which Wikswo has christened the Automated Biology Explorer (ABE), is a unique piece of software called Eureqa. Schmidt and Lipson originally created Eureqa to design robots without going through the normal trial and error stage that is both slow and expensive. After it succeeded, they realized it could also be applied to solving science problems.

One of Eureqa’s initial achievements was identifying the basic laws of motion by analyzing the motion of a double pendulum. What took Sir Isaac Newton years to discover, Eureqa did in a few hours when running on a personal computer.

In 2006, Wikswo heard Lipson lecture about his research. “I had a ‘eureka moment’ of my own when I realized the system Hod had developed could be used to solve biological problems and even control them,” Wikswo said.

“Biology is the area where the gap between theory and data is growing the most rapidly,” said Lipson. “So it is the area in greatest need of automation.” The biological system that the researchers used to test ABE is glycolysis, the primary process that produces energy in a living cell. Specifically, they focused on the manner in which yeast cells control fluctuations in the chemical compounds produced by the process.

The researchers chose this specific system, called glycolytic oscillations, to perform a virtual test of the software because it is one of the most extensively studied biological control systems. Jenkins and Vallabhajosyula used one of the process’ detailed mathematical models to generate a data set corresponding to the measurements a scientist would make under various conditions. To increase the realism of the test, the researchers salted the data with a 10 percent random error. When they fed the data into Eureqa, it derived a series of equations that were nearly identical to the known equations.

Wikswo’s group is currently developing “laboratory-on-a-chip” technology that can be controlled by Eureqa. This will allow them to design and perform a wide variety of basic biology experiments. Their initial effort is focused on developing a microfluidics device that can test cell metabolism.; Source: Vanderbilt University