Ultra-small and High-precision Lasers

Photo: Laser

"We advanced a new approach to develop a laser that boasts as yet unparalleled stability and precision, allowing us to conduct new experiments and open up new realms of research," said Professor Morandotti. "Plus, a multitude of applications may be created in biology, medicine, materials processing, IT, high speed communications, and metrology."

Flexible and effective, this ultra-small laser stands out for its mode of operation. The researchers developed a ring resonator (a key laser key component) that has the unique feature of playing a dual role by acting both as a filter and a non-linear element. This is the first time researchers have successfully integrated a resonator and a micro-ring in the laser component that makes it possible to better control the light source. It is manufactured using a special glass capable of harnessing the nonlinear optical properties central to laser operation.

For the first time, the researchers tested the filter-driven four-wave mixing method, which presents a number of advantages. Notably the method makes it possible to increase the laser's stability and resistance to external disruptions, increase the amplitude of light pulses while reducing their duration, and emit extremely high quality, high-repetition-rate pulses of up to 200 gigahertz or more, while maintaining a very narrow spectral bandwidth.