The result is a titanium implant coated with a three-dimensional branching nanostructure, called dendrimer, which acts as a bridge between the titanium and the bone and which also carries substances that facilitate the formation of new tissue onto the prosthesis surface. This ensures that the healthy component binds to the prosthesis making the fixation occur in a natural way, more stable and longer lasting than in the current ones.
The method proposed by the researchers in the article 'Dendritic Scaffold onto Titanium Implants. A Versatile Strategy Increasing Biocompatibility', published in the journal Polymers, confers specific features to the implants, since they have a more homogeneous structure with greater integrity, which causes less wear. It also offers the possibility of controlling its composition for the administration of specific drugs in order to avoid rejections and infections.
Specifically, the experts included fragments of proteins that the body produces naturally, known as fibronectins, which encourage the binding of bone cells to the implant. These molecules cause the cells to grow and proliferate, resulting in greater acceptance of the external element. Leonor Santos-Ruiz, a researcher at the University of Malaga and one of the authors of the article, declared to Fundación Descubre: 'The integrins of the cells function as perfect hooks that attach themselves to the fibronectin fragments introduced into the dendrimer structure, achieving a robust integration between the implant and the organism.'
In this way, each branch of the scaffold becomes attached to the bone with these hooks, thereby anchoring the implant and assisting the connections to occur naturally thanks to the integration of the metal with the living tissue. 'These unique properties make dendrimeric systems suitable for a wide variety of applications in regenerative medicine,' added the researcher.
Thus, in addition to fibronectins, other substances could be incorporated, such as anti-inflammatory substances, which favour tissue recovery after the installation of the prosthesis, or antibiotics, to avoid frequent problems in current implants, such as bacterial infections.
The problems resulting from replacements with metal material are usually due to overloading, which can lead to the loss of healthy bone, wear and tear of the implant itself, or a poor bone-implant interaction that results in rejection or infection.
The experts are already working to confirm the suitability of its use in patients such as has been demonstrated in the laboratory. In addition, they consider it a viable and applicable option for dental implants, and for full jaw, hip or knee prostheses. 'The latter currently have a working life of about 10 years. With this new structure the duration would be longer,' concluded the researcher.
COMPAMED-tradefair.com; Source: Fundación Descubre