Stephanopoulos and his team see an opportunity with hybrid cages -- merging self-assembling protein building blocks with a synthetic DNA scaffold -- that could combine the bioactivity and chemical diversity of the former with the programmability of the latter. And that is what they set out to create -- a hybrid structure constructed through chemical conjugation of oligonucleotide (a synthetic DNA strand) handles on a protein building block. The triangular base bearing three complementary single-stranded DNA handles is self-assembled and purified separately by heating it to alter its properties.
"We reasoned that by designing these two purified building blocks, they would spontaneously snap together in a programmable way, using the recognition properties of the DNA handles," Stephanopoulos said. "It was especially critical to use a highly thermally stable protein like this aldolase, because this self-assembly only works at 55 degrees Celsius, and many proteins fall apart at those temperatures."
Another advantage of DNA, which is not possible with proteins, is tuning the cage size without having to redesign all the components. Stephanopoulos continued, "The size of this assembly could then be rationally tuned by changing the length of each DNA edge, whereas the protein would provide a scaffold for the attachment of small molecules, targeting peptides or even fusion proteins."
While other examples of hybrid structures exist, this particular cage is the first one constructed through chemical conjugation of oligonucleotide handles on a protein building block. This strategy can in principle be expanded to a wide range of proteins (some with cancer targeting abilities, for example). Thus, Stephanopoulos's work has the potential to enable a whole new hybrid field of protein-DNA nanotechnology with applications not possible with either proteins or DNA alone.
COMPAMED-tradefair.com; Source: Arizona State University