The researchers tested the adhesive properties of the bee's glue by separating the oil-based component from the sugar-based component and evaluating how sticky the nectar remained under various humidity conditions. As expected, as humidity increased and the nectar absorbed more water, its adhesive properties diminished. The same effect was true when humidity decreased and the nectar dried out. Meanwhile, under similar conditions, nectar coated with the pollenkitt oil remained sticky despite changes in humidity.
"We believe you could take the essential concepts of this material and develop a novel adhesive with a water-barrier external oil layer that could better resist humidity changes in the same way," Meredith said. "Or potentially this concept would apply to controlling the working time of an adhesive, such as its ability to flow and time to dry or cure."
The research team, which included Victor Breedveld, an associate professor in the School of Chemical and Biomolecular Engineering, also examined dynamics of the bee adhesive.
"We wanted to know, if the pollen can stay so firmly attached to the bee's hind legs, how do the bees manage to remove it when they return to the hive," Meredith said.
The answer may lie in the adhesive's a rate-sensitive response. In other words, the faster the force attempting to remove it, the more it would resist.
"This is a property of capillary adhesion, which we believe could be harnessed and tailored for specific applications, such as controlling motion in microscopic or nanoscale devices, in fields ranging from construction to medicine," Meredith said.
COMPAMED-tradefair.com; Source: Georgia Institute of Technology