Piezo technology for ultrasound sensors
For almost 30 years, PI Ceramic has been studying piezo technology which, courtesy of its unique properties, makes especially important contributions to medical sensor technology. Of note are the precision, with a resolution into the picometre range, dynamics with a reaction time in microseconds, energy efficiency which also allows for battery-dependent operational applications, a compact design with dimensions measuring millimetres and bi-directional use as sensors and actuators. Today, piezo technological components are already fulfilling important functions within diagnostic imaging, minimally invasive devices (e.g., needle tip tracking), as flow sensors (for example for detecting air bubbles and speed), for the detection of fill levels, as pressure sensors and as status monitors for devices, in microscopy or for changes of position, e.g., when used in wearables.
In different situations, automatic monitoring of medical processes becomes a matter of life or death. Using devices for monitoring patients, staff can continue to check vital signs and evaluate them in order to make a correct diagnosis and instantly react in the case of possible abnormalities. Noncontacting, gentle monitoring is important in this context as well. Ultrasound sensors based on piezo components, which can be mounted on the tubes of monitoring devices, are ideally suited for this purpose – ultrasound waves penetrate the tube from the outside and make noncontacting monitoring possible. The ultrasound sensors can also help monitor different media, for example with noncontacting, non-contaminating measurement of the gas flow inside respirators or detection of potentially fatal bubbles of air in the tubes of heart-lung machines or dialysis machines. Piezo components integrated into the ultrasound sensors generate the ultrasound. PI Ceramic produces these piezo elements – custom made to the specifications of customers. “We have a wide range of designs available, depending on the application”, says Sandra Niederschuh, product manager at PI Ceramic.
Electronic nose to revolutionise medical diagnostics
Thanks to high-tech cameras and microphones, machines today can already see and hear. Partners SmartNanotubes Technologies and duotec have committed themselves to no less than digitalising a further sense – that of smell. “Our electronic nose really is a disruptive technology which will revolutionise many applications from process monitoring to medical diagnostics”, says Dr Viktor Bezugly, CEO of SmartNanotubes. Compared to common gas sensors, the SmartNanotubes sensors are highly sensitive, energy-efficient, compact, light-weight and less expensive. Their use makes it possible to recognise complex patterns, which are typical for scents. Several sensors create a "scent pattern”, a self-learning software compares these patterns with a library and, in this way, distinguishes gasses from scents. The cloud-based database continues to expand, and is already being fed by more than 1,000 users. “Our goal is, for example, the early diagnosis of incontinence in only five minutes, which through reduced cleaning efforts can generate cost savings of up to 100 euros per case”, says Bezugly in his Forum lecture. The development has progressed so far that a market launch of initial products could already be possible in 2024.
Photonic biosensors for early cancer diagnosis
Over the last ten years, biosensor technologies have been developed which enable the sensitive, quantitative detection of biomarkers (indicator molecules, e.g., special proteins or DNA) for diseases such as cancer, cardiovascular and infectious diseases. The Dutch company Surfix is working in this area using a photonic biosensor. This highly sensitive, fast and label-free technology offers the opportunity to detect several biomarkers at once. “Together with the low cost per unit and the easy scaling options of production, this function will revolutionise the world of medical diagnostics by allowing point-of-care diagnosis and monitoring the treatment of many diseases”, says Hans Dijk, business development manager at Surfix. The photonic biosensor by Surfix combines a photonic biochip and microfluidic cartridge with intelligent technologies for the fluid and optical interface in an optimised process sequence. Both the photonic biochip and the microfluidic cartridge profit from unique nano coatings, which improve the sensitivity of the sensor and the flow of the sample and reduce the unwanted binding of biomolecules. The signal from the photonic biosensor is read out by a desktop reader.
Photonic biochips use light instead of electricity to determine the presence of biomarkers. Light passes through a spiral structure on the chip, comparable to a miniature optic fibre. Receptor molecules applied to the surface of the photonic biochip can selectively capture and bind certain biomarkers in a sample, based on biorecognition. The interaction between the receptor molecules and the biomarkers leads to a change in the properties of the light, which is recognised and translated into a useful diagnostic result, e.g., information regarding the presence or concentration of a certain biomarker in the sample. Surfix concentrates on developing diagnostics for different types of cancer and on detecting oncological biomarkers in liquid biopsies. “Potentially, any biomolecule can be determined with the aid of the photonic diagnostic platform by Surfix”, says Dijk.
The goal of the APFEL project: an intelligent electronic plaster
Healing wounds is a problem that still has not been completely understood and solved. Acute wounds heal within a few days or weeks, depending on the size of the injury. The property of an electric gradient to cause directional movement and polarisation of cells in regenerative tissue is the starting point for different therapies developed by the BMBF project “APFEL”: An “intelligent electronic plaster” is supposed to lead to faster and improved wound healing. In this project, the Fraunhofer Institute for Electronic Nanosystems (ENAS) and its partners are researching additive procedures to manufacture electronic systems with several flexible layers. In the meantime, a technological demonstrator for an electrically active plaster with printed electrodes on flexible substrates has been created. In a scratch assay, gaps were introduced to a cell layer and the accelerated closure of this “wound” was demonstrated. “To achieve this, we adapted screen printing methods for the manufacture of conductive and insulating multi-layer strata on flexible substrates”, said Valeri Fitz, scientific research fellow in the System Packaging department at ENAS, at the COMPAMED Innovation Forum. Further development included electrical vias for thin film substrates and structuring and connective technologies for the hybrid integration of common electronic components and related electronic control systems for testing the demonstrators. The result is that additive manufacturing can be used to develop flexible medical pads which can be used both for the treatment of wounds and in diagnostics.