It should be clarified that Anatoly Snigirev, together with his colleagues, developed X-ray lenses back in 1996. But they could only become truly effective recently, when powerful 3rd generation synchrotrons (resonant cyclic electron accelerators that move in a circular orbit) appeared with which they can be used.
According to the scientist, the possibility of a thorough study of self-organizing materials can revolutionize many industries.
As for the scope of self-organizing structures, it is incredibly wide. And the hopes for these materials are very high. For example, it is assumed that photonic crystals grown by humans, replacing silicon, will revolutionize electronics by making a variety of optoelectronic devices and, in particular, computers, many times faster and more powerful.
The method of studying self-organizing materials proposed by scientists can be useful to biologists studying the structure of tissues of living organisms - for example, corals or insect shells.
According to Anatoly Snigirev, a team of scientists representing different fields of knowledge, that has developed a new method for studying self-organizing materials, has been involved in a large-scale project to create a new fourth-generation synchrotron. This project, called SKIF, will be implemented in Novosibirsk.
COMPAMED-tradefair.com; Source: Immanuel Kant Baltic Federal University