Organic semiconductors, however, do not conduct current as efficiently as, for example, semiconductors of silicon or other inorganic materials. The scientists have discovered that one of the causes of this is the formation of traps in the organic materials in which the charge carriers get stuck. Several research groups around the world have been working hard to understand not only where the traps are located, but also how they can be eliminated.
"There are traps in all organic semiconductors, but they are probably a greater problem in n-type materials, since these are generally poorer semiconductors than p-type materials", says Martijn Kemerink, professor of applied physics in the Division for Complex Materials and Devices at Linköping University.
Materials of p-type have a positive charge and the charge carriers consist of holes, while materials of n-type have charge carriers in the form of electrons, which gives the material a negative charge.
Martijn Kemerink and his colleagues at Linköping University have concluded that water is the villain in the piece. Specifically, the water is thought to sit in nanometre-sized pores in the organic material and is absorbed from the environment.
"In a p-type material the dipoles in the water align with their negative ends towards the holes, which are positively charged, and the energy of the complete system is lowered. You could say that the dipoles embed the charge carriers such that they cannot go anywhere anymore", says Martijn Kemerink.
For n-type materials, the water orients the other way around, but the effect is the same, the charge is trapped.