COMPAMED: MATERIALS: News -- COMPAMED Trade Fair
Menu

Image: A roll of PFAS-free polymer membrane; Copyright: Fraunhofer IAP / Till Budde

Fraunhofer IAP / Till Budde

PFAS-free polymer membranes for semiconductor production

28.08.2024

Researchers at the Fraunhofer Institute for Applied Polymer Research IAP have developed an innovative, PFAS-free polymer membrane that represents an environmentally friendly alternative to the PFAS-containing membranes previously used in the semiconductor industry.
Read more
Image: Two hands holding a 3D-printed bolt; Copyright: Envato/Tatiana_Mara

Envato/Tatiana_Mara

Innovation in 3D: Laser Powder Bed Fusion

08.05.2024

An innovative 3D printing process is breaking down traditional manufacturing boundaries and opening up unimagined possibilities from aerospace to medical technology: laser powder bed fusion (LPBF). In our interview, Tim Lantzsch from the Fraunhofer Institute for Laser Technology ILT explains current applications of this promising additive manufacturing technology.
Read more
Image: A microscopic image of the newly developed fibers; Copyright: Washington State University

Washington State University

Conductive, cotton-based fiber for smart textiles

12.12.2023

A single strand of fiber developed at Washington State University has the flexibility of cotton and the electric conductivity of a polymer, called polyaniline. The newly developed material showed good potential for wearable e-textiles.
Read more
Image: Prof. Martin Bertau (left) and doctoral student Paul Scapan with safety glasses in the laboratory; Copyright: TU Bergakademie Freiberg / Andreas Hiekel

TU Bergakademie Freiberg / Andreas Hiekel

Basis for innovative PFAS filter made of clay

06.12.2023

PFAS filters available for industrial waste are usually made of activated carbon (PFAS = perfluorinated and polyfluorinated alkyl compounds). As this is comparatively expensive, researchers are looking for alternative filter materials for the so-called "eternal toxins", whose hazardous residues only degrade very slowly in the environment.
Read more
Image: Used auto parts warehouse worker checks inventory in warehouse; Copyright: coffeekai

coffeekai

Recycling model for the plastics industry

30.11.2023

Prof Dr Klaus Kümmerer from Leuphana University Lüneburg and his colleague Prof Dr Hans-Josef Endres from Leibniz University Hanover want to develop a sustainable recycling model for the plastics industry.
Read more
Image: Printing the support frame using a 3D printer; Copyright: bellaSeno

bellaSeno

3D printing: composite material for bone healing

28.11.2023

After a bone fracture, some patients experience healing disorders. To enable effective treatment in these cases, the Fraunhofer Institute IFAM (Germany) is researching a new composite material for use in the operating theater as part of the SCABAEGO joint project.
Read more
Image: a man holds up a lens with his left hand and looks at it; Copyright: envato/svitlanah

envato/svitlanah

PFAS ban: "Most of the PFAS substances used industrially do not pose a risk to humans or the environment"

31.10.2023

The intended European Union ban on per- and polyfluoroalkyl substances (PFAS) is causing discussion throughout Europe. Many companies in the medical technology sector fear that they will no longer be able to reliably manufacture products as before. We talked to expert Dr. Martin Leonhard, who chairs the medical technology section of the German industry association SPECTARIS.
Read more
Image: A Person (Felix Thelen) working in a lab; Copyright: RUB, Marquard

RUB, Marquard

Autonomous measuring instruments systematically detect new materials

31.10.2023

Despite highly specialized methods that can simultaneously produce a range of materials on a single sample and then measure them automatically, every minute counts when analyzing them: because days or even weeks can pass before the characterization of a sample is complete. The new algorithm can be integrated into existing measuring instruments to boost their efficiency significantly.
Read more
Image: Various plastic waste on a pile; Copyright: Nick Fewings / Unsplash

Nick Fewings / Unsplash

Plastic production via advanced recycling lowers GHG emissions

17.10.2023

Producing new plastic by advanced recycling of post-use plastic (PUP), instead of fossil-based production, can reduce greenhouse gas emissions (GHG) and increase the U.S. recycling rate, according to research by the U.S. Department of Energy’s (DOE) Argonne National Laboratory.
Read more
Image: Roll-to-roll vacuum coating system RC300; Copyright: Fraunhofer FEP

Fraunhofer FEP

Roll-to-roll: system traverse for 2D inline process monitoring

05.10.2023

Within the joint project KODOS (funding reference 13N14607), funded by the German Federal Ministry of Education and Research, a solution for in-line process monitoring and mapping of process parameters was developed with SURAGUS GmbH at Fraunhofer FEP.
Read more
Image: Several disposable masks on a pile of garbage; Copyright: Rimidolove

Rimidolove

Sustainable materials and recycling in the medical industry

19.09.2023

Recycling instead of disposing sounds easy. But where are the difficulties and what opportunities exist for the industry to become more sustainable, despite strict safety regulations?
Read more
Image: a graphic depicting the process of the procedure; copyright: Willfried Kunz and Patrick Altschuh

Willfried Kunz and Patrick Altschuh

KIT’s high-performance computer optimizes materials for medical technology

17.08.2023

The Karlsruhe Institute of Technology (KIT) has unveiled a cutting-edge €1.2 million computer dedicated to materials research. This powerful tool can predict material properties even before they are produced, significantly enhancing the potential for optimization, including in the realm of COVID rapid tests.
Read more
Image: A man stands in front of a monitor showing the atomistic structure of a polymer with carbon atoms and hydrogen atoms; Copyright: UBT / Chr. Wißler

UBT / Chr. Wißler

Digital AI system for tailoring polymers

25.07.2023

Prof. Dr. Christopher Kuenneth together with research partners in Atlanta, USA, have now developed a digital system that promises extraordinarily high economical, technological and ecological benefits: from around 100 million theoretically possible polymers, their system can precisely select those materials that have an ideal property profile for targeted applications at unprecedented speed.
Read more
Image: Intelligent rubber material that adapts to ambient humidity. This wristband shows the material's ability to adapt, in this case, to wrist movements.; Copyright: University of Stuttgart, FSM-Lab

University of Stuttgart, FSM-Labor

Intelligent rubber materials

20.07.2023

Autonomously switchable polymer materials have recently been developed by materials scientists at the University of Stuttgart and pharmacists at the University of Tübingen.
Read more
Image: flat printed model of a deformable finger orthosis on a light background; Copyright: Fraunhofer IWU

Fraunhofer IWU

2.5D printing: "It only takes about five minutes to print an orthosis"

15.05.2023

Customized finger orthoses that can be printed quickly: Lukas Boxberger from the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Dresden focuses his research on this subject. In the future, the WEAM orthosis will support the customization of standard orthoses. In this interview, he explains the processes and materials that will turn this concept into a reality.
Read more
Image:  the three-in-one hybrid material

Lunghammer - TU Graz

Smart artificial skin in application check stage

09.05.2023

The smart skin developed by Anna Maria Coclite has many potential applications – from robotics and cosmetic surgery to prosthetics. With an ERC Proof of Concept Grant, the researcher is now exploring its possible practical applications.
Read more
Image: Aligner made of shape memory polymers; Copyright: Fraunhofer IAP

Fraunhofer IAP

Smart materials for aligner therapy

25.04.2023

Clinically effective, custom-made, discreet and comfortable - the demands on aligners for the therapy of malocclusions are high. This also applies to the material of these orthodontic splints. A team has now developed a highly innovative material that enables completely new treatment concepts and reduces costs. The scientists focused on polymers with shape memory properties.
Read more
Image: Biopolyester food packaging; Copyright: MPI-IS

MPI-IS

Sustainability for biodegradable artificial muscles

28.03.2023

Scientists at the Max Planck Institute for Intelligent Systems, at Johannes Kepler University and at University of Colorado Boulder developed fully biodegradable, high-performance artificial muscles. Their research project marks another step towards green technology becoming a lasting trend in the field of soft robotics.
Read more
Image:three rolls of lingin in gold and black; Copyright: DITF

DITF

Carbon fibers based on wood

14.03.2023

The DITF have developed a sustainable and cost-saving process to produce carbon fibers from lignin. This is an inexpensive raw material that is available in large quantities and is a waste product in paper production. The process offers high energy-saving potential and is particularly environmentally friendly. It uses natural, renewable raw materials and does not require solvents.
Read more
Image: A smiling man with blue shirt, short grey hair and glasses is standing at the sea - Prof. Uwe Bornscheuer; Copyright: Laura Schirrmeister

Laura Schirrmeister

Degradation of plastic waste using newly developed biocatalysts

14.02.2023

The plastic materials polyurethane and polyvinyl alcohol can now be degraded under mild conditions with the help of enzymes as biocatalysts. Scientists from the University of Greifswald have developed corresponding methods together with the German company Covestro and teams from Leipzig and Dublin, as recently published in Angew. Chem. Int. Ed., in two separate articles.
Read more