Plastic production via advanced recycling lowers GHG emissions -- COMPAMED Trade Fair
Menu

Image: A roll of PFAS-free polymer membrane; Copyright: Fraunhofer IAP / Till Budde

Fraunhofer IAP / Till Budde

PFAS-free polymer membranes for semiconductor production

28.08.2024

Researchers at the Fraunhofer Institute for Applied Polymer Research IAP have developed an innovative, PFAS-free polymer membrane that represents an environmentally friendly alternative to the PFAS-containing membranes previously used in the semiconductor industry.
Read more
Image: A small bottle with plastic beads distributed in front of the bottle opening; Copyright: beta-web GmbH / Messe Düsseldorf

COMPAMED: Suppliers focus on sustainability

17.06.2024

Immerse yourself in the world of sustainable medical technology at COMPAMED: How are reusability and recycling of components and materials becoming essential practices in the medical technology supplier industry and what role do they play in creating an environmentally conscious production cycle? Watch the video for an insight!
Read more
Image: Products from the 3D printer on a black background; Copyright: Empa

Empa

Miracle material: cellulose aerogel combines sustainability with high-tech

24.04.2024

Researchers at Empa in Switzerland have developed a new type of material that combines several pioneering properties: the cellulose aerogel is biodegradable, can be printed in three dimensions and also offers excellent thermal insulation.
Read more
Image: This graphic visualizes the AI technique employing arrows and different colors; Copyright: Ken Sakaushi National Institute for Materials Science

Ken Sakaushi National Institute for Materials Science

AI-based evolution: green hydrogen production enhances with platinum-free electrode materials

28.03.2024

Cutting-edge AI technology is improving the field of materials science, particularly in the quest for sustainable energy solutions. Researchers at the National Institute for Materials Science (NIMS) in Japan have developed an evolutionary AI technique that accelerates the discovery of high-performance materials crucial for green hydrogen production.
Read more
Image: The picture shows on the right three brown examples of hydrogel. To the left, there is a transparent hydrogel; Copyright: Universitat Politècnica de Catalunya

Universitat Politècnica de Catalunya

New hydrogel for seawater desalination and medical therapies

18.03.2024

Researchers at Universitat Politècnica de Catalunya - BarcelonaTech (UPC) have developed a thermosensitive hydrogel with multifaceted applications, including seawater desalination using solar energy and the creation of advanced biomedical adhesives for semi-invasive therapies and medical diagnostics.
Read more
Image: Prof. Martin Bertau (left) and doctoral student Paul Scapan with safety glasses in the laboratory; Copyright: TU Bergakademie Freiberg / Andreas Hiekel

TU Bergakademie Freiberg / Andreas Hiekel

Basis for innovative PFAS filter made of clay

06.12.2023

PFAS filters available for industrial waste are usually made of activated carbon (PFAS = perfluorinated and polyfluorinated alkyl compounds). As this is comparatively expensive, researchers are looking for alternative filter materials for the so-called "eternal toxins", whose hazardous residues only degrade very slowly in the environment.
Read more
Image: Used auto parts warehouse worker checks inventory in warehouse; Copyright: coffeekai

coffeekai

Recycling model for the plastics industry

30.11.2023

Prof Dr Klaus Kümmerer from Leuphana University Lüneburg and his colleague Prof Dr Hans-Josef Endres from Leibniz University Hanover want to develop a sustainable recycling model for the plastics industry.
Read more
Image: A man and a woman stand in front of a terminal on a large machine and work on it; Copyright: eakkachaih

eakkachaih

Focusing on the human – knowledge and assistance in production

01.11.2023

Providing the best possible support for people in production, transferring their knowledge and maintaining their ability to work for as long as possible is becoming increasingly important for companies, a trend report by Fraunhofer IPK makes clear.
Read more
Image: Various plastic waste on a pile; Copyright: Nick Fewings / Unsplash

Nick Fewings / Unsplash

Plastic production via advanced recycling lowers GHG emissions

17.10.2023

Producing new plastic by advanced recycling of post-use plastic (PUP), instead of fossil-based production, can reduce greenhouse gas emissions (GHG) and increase the U.S. recycling rate, according to research by the U.S. Department of Energy’s (DOE) Argonne National Laboratory.
Read more
Image: Photo of a car interior. A man sits behind the wheel and operates a screen; Copyright: Fraunhofer IDMT/Anika Bödecker

Fraunhofer IDMT/Anika Bödecker

Vital data: the whole body on the radar

04.10.2023

Researchers at the Fraunhofer Institute for Digital Media Technology IDMT in Oldenburg have developed a new method for collecting and analyzing vital signs from the human body by using radar.
Read more
Image: Several disposable masks on a pile of garbage; Copyright: Rimidolove

Rimidolove

Sustainable materials and recycling in the medical industry

19.09.2023

Recycling instead of disposing sounds easy. But where are the difficulties and what opportunities exist for the industry to become more sustainable, despite strict safety regulations?
Read more
Image: some computer mouse shells made of printed wood fiber on a table; Copyright: Empa

Empa

Wood instead of plastic? The dream of sustainable products

06.09.2023

In our everyday life, the desire to use sustainable products instead of those made of plastic is common and can usually be implemented well. But what about medical technology manufacturers? Could they do without plastics at all in order to become more sustainable? After all, they often use a lot of electronics.
Read more
Image: R2R printed electronic components on paper ; Copyright: K. Selsam/Fraunhofer ISC

K. Selsam/Fraunhofer ISC

CircEl-Paper: Recyclable paper-based electronics

06.06.2023

Billions of tons of electronic waste are produced in the EU every year. With a novel approach, the new EU project "CircEl-Paper" could sustainably improve the recycling process for electronics in the future.
Read more
Image: Aligner made of shape memory polymers; Copyright: Fraunhofer IAP

Fraunhofer IAP

Smart materials for aligner therapy

25.04.2023

Clinically effective, custom-made, discreet and comfortable - the demands on aligners for the therapy of malocclusions are high. This also applies to the material of these orthodontic splints. A team has now developed a highly innovative material that enables completely new treatment concepts and reduces costs. The scientists focused on polymers with shape memory properties.
Read more
Image: Group photo of the project partners in Sevilla / Spain; Copyright: DECHEMA e.V.

DECHEMA e.V.

Recovery of battery metals - project launch of Metallico

18.04.2023

How can battery metals such as lithium, cobalt, copper, manganese and nickel be recycled in a sustainable way? This question is in the focus of the new EU project METALLICO, in which DECHEMA is also involved. 23 partners from nine countries will optimize five innovative processes for the recovery of those metals and subsequently demonstrate these in case studies on an industrially relevant scale.
Read more
Image: Symbol image for artificial intelligence; Copyright: Gerd Altmann / Pixabay

Gerd Altmann / Pixabay

Using AI to design innovative materials

11.04.2023

Advanced materials become increasingly complex due to the high requirements they have to fulfill regarding sustainability and applicability. Dierk Raabe and colleagues reviewed the use of artificial intelligence in materials science and the untapped spaces it opens if combined with physics-based simulations.
Read more
Image: Biopolyester food packaging; Copyright: MPI-IS

MPI-IS

Sustainability for biodegradable artificial muscles

28.03.2023

Scientists at the Max Planck Institute for Intelligent Systems, at Johannes Kepler University and at University of Colorado Boulder developed fully biodegradable, high-performance artificial muscles. Their research project marks another step towards green technology becoming a lasting trend in the field of soft robotics.
Read more
Image: Schematic diagram of the construction of biomolecular glass and its unique properties; Copyright: XING Ruirui

XING Ruirui

Researchers develop biodegradable, biorecyclable glass

22.03.2023

A research group led by Prof. YAN Xuehai from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences has developed a family of eco-friendly glass of biological origin fabricated from biologically derived amino acids or peptides.
Read more
Image:three rolls of lingin in gold and black; Copyright: DITF

DITF

Carbon fibers based on wood

14.03.2023

The DITF have developed a sustainable and cost-saving process to produce carbon fibers from lignin. This is an inexpensive raw material that is available in large quantities and is a waste product in paper production. The process offers high energy-saving potential and is particularly environmentally friendly. It uses natural, renewable raw materials and does not require solvents.
Read more
Image: Hand with a glove is holding a rectangle chip with the words

Georgia Tech

New ultrafast water disinfection method more environmentally friendly

23.02.2023

Having safe drinking water is vital for public health, but traditional methods of disinfection cause their own environmental problems. Chlorine is cheap and easy to use in centralized water systems, but at the expense of harmful chemical byproducts.
Read more
Image: A smiling man with blue shirt, short grey hair and glasses is standing at the sea - Prof. Uwe Bornscheuer; Copyright: Laura Schirrmeister

Laura Schirrmeister

Degradation of plastic waste using newly developed biocatalysts

14.02.2023

The plastic materials polyurethane and polyvinyl alcohol can now be degraded under mild conditions with the help of enzymes as biocatalysts. Scientists from the University of Greifswald have developed corresponding methods together with the German company Covestro and teams from Leipzig and Dublin, as recently published in Angew. Chem. Int. Ed., in two separate articles.
Read more