Fraunhofer IPMS
10.02.2025
Medical diagnostics and therapy rely on precise and reliable results. Optical systems from the Fraunhofer Institute for Photonic Microsystems (IPMS) enable position control and gentle analysis methods. The micro scanner technology developed at Fraunhofer IPMS is used in a variety of medical applications, including medical endoscopy, confocal and fluorescence microscopy.Envato/YouraPechkin
10.06.2024
They monitor, transmit and control – sensors in medical technology. Hardly any device can do without them. For most people, their health at some point in their lives will depend on whether sensors are doing their job properly. But how diverse are their applications in medical devices?Qant
14.05.2024
The innovative magnetic field sensor from Q.ANT, a German quantum technology company, opens up far-reaching possibilities for prosthesis control and sensor technology in medical technology and beyond.feelSpace
13.12.2023
The German Institutes of Textile and Fiber Research Denkendorf (DITF) have developed a contacting process with which orientation aids - and e-textiles in general - can be produced more economically and conveniently.imagesourcecurated
25.10.2023
In order to produce thin organic semiconductor films automatically and with well-defined properties, researchers – led by Leibniz IPHT in Jena, Germany – have developed a new technological approach for depositing thin films with high molecular precision.atercorv
18.10.2023
Scientists from the University of Stuttgart, the University of Tübingen, the Max Planck Institute for Intelligent Systems and the Max Planck Institute for Biological Cybernetics are conducting research on intelligent bionic systems that will aid understanding and treatment of certain diseases of the central nervous system.Fraunhofer IBMT
12.10.2023
Researchers at Fraunhofer are working as part of an EU research project to improve control of prosthetic hands down to individual fingers.Kate Myers/Penn State
03.10.2023
Continuous monitoring of sweat can reveal valuable information about human health, such as the body’s glucose levels. However, wearable sensors previously developed for this purpose have been lacking, unable to withstand the rigors or achieve the specificity needed for continuous monitoring. Now, the research team has created a novel wearable patch that may be up to the task.TUD
20.09.2023
Scientists from the Chair of Materials Science and Nanotechnology at TU Dresden (TUD) have made considerable progress in the development of highly innovative solutions for the detection of viral pathogens in two studies they presented recently.Joakim Palmqvist
05.09.2023
Linnaeus University is partnering with industry and healthcare to develop advanced biosensors, investing SEK 35 million in a project aimed at faster and cost-effective diagnoses of aggressive lung cancer, viral, and bacterial diseases, potentially enabling self-testing at home.National University of Singapore
22.08.2023
NUS researchers have developed 'eAir', an innovative pressure sensor inspired by the lotus leaf effect. This sensor could revolutionize minimally invasive surgeries by providing tactile feedback to surgeons and improve patient experiences in monitoring intracranial pressure. Its unique design enhances precision and reliability, potentially transforming various medical applications.Joseph Puthussery
12.07.2023
Scientists are looking at ways to surveil indoor environments in real time for viruses. By combining recent advances in aerosol sampling technology and an ultrasensitive biosensing technique, researchers at Washington University in St. Louis have created a real-time monitor that can detect any of the SARS-CoV-2 virus variants in a room in about 5 minutes.Leibniz Institute of Photonic Technology
11.07.2023
Nanometer-scale coatings with functional materials play an important role in many sensory, electronic and photonic applications. An international team of researchers – coordinated by Leibniz IPHT in Jena, Germany – has succeeded for the first time in observing novel growth effects of tin coatings on silicon nanometer-structured surfaces.Fraunhofer IZM
29.06.2023
A patch equipped with highly sensitive electronics is meant to collect and evaluate vital data. In addition, the sensors will be integrated into baby clothing in order to improve the future of medical monitoring for newborns with the highest level of data security.Empa
13.06.2023
For Qun Ren, every minute counts. The Empa researcher and her team are currently developing a diagnostic procedure that can detect life-threatening blood poisoning caused by staphylococcus bacteria rapidly.Fraunhofer IZM
23.05.2023
Imagine a scenario where you simply just throw in a pill to identify an error—this is now one step closer to reality thanks to the work done by researchers at Fraunhofer IZM in cooperation with Micro Systems Technologies (MST) and Sensry GmbH. As small as a piece of candy, the waterproof IoT sensor can reliably measure the properties of liquids even in hard-to-reach places.Julia Siekmann, Uni Kiel
16.05.2023
People spend an average of 22 hours a day indoors, where furniture, carpets or wall paints can release harmful solvents over time. The scientists in the international doctoral programme "SENNET" aim to detect such pollutants. They want to develop reliable sensors based on special, porous materials.Lunghammer - TU Graz
09.05.2023
The smart skin developed by Anna Maria Coclite has many potential applications – from robotics and cosmetic surgery to prosthetics. With an ERC Proof of Concept Grant, the researcher is now exploring its possible practical applications.DTU/ERIK Arkitekter/Tegnestuen Kontekst
02.05.2023
DTU is expanding its cleanroom facilities to meet the high demand for microchips from companies and researchers. The expansion will also strengthen the development of quantum computers, which are based on research and development of new chips.Max Planck Institute for Molecular Biomedicine
20.04.2023
Novel microelectrode array system enables long-term cultivation and electrophysiological analyses of brain organoids.SIAT
19.04.2023
In radiotherapy, precision in targeting tumor tissue while minimizing damage to healthy tissue is crucial. Monitoring the dose of radiation delivered and absorbed in real-time, particularly in the gastrointestinal tract, poses significant difficulty.Caltech
05.04.2023
A new kind of smart bandage developed at Caltech may make treatment of chronic wounds easier, more effective, and less expensive. These smart bandages were developed in the lab of Wei Gao, assistant professor of medical engineering, Heritage Medical Research Institute Investigator, and Ronald and JoAnne Willens Scholar.HZDR/Sandoval Bojorquez
31.03.2023
Infection and immunity status of the population are considered key parameters for handling pandemics. For this purpose, detecting antigens and antibodies is of great importance. The devices currently used for this purpose - what are known as point-of-care (POC) devices- are one option for rapid screening.Amac Garbe/Fraunhofer IWS
23.03.2023
Precise two-dimensional analysis of high-tech layers in microelectronics, battery factories or even in the automotive sector approaches within reach. A measuring system developed at the Fraunhofer Institute for Material and Beam Technology IWS.envato/ Satura_
28.02.2023
Auditory neuroscientist of the University Medical Center Göttingen receives additional funding by the European Research Council. His project "OptoWave" concentrates on optimizing the optical cochlear implant for the application in hearing impaired people.WILDDESIGN GmbH, Gelsenkirchen
07.02.2023
They are barely the size of a thumbnail, able to communicate with each other and respond to each other, and designed to make life easier for people with functional limitations. We are talking about a new generation of interactive microimplants developed by the innovation cluster INTAKT.phwt
06.02.2023
Is the wound healing or is it infected? Physicians must change the bandage to find out because wounds are covered with non-transparent dressings. What happens under the wound dressing is a “black box”. Armin Haas and Professor Kai-Uwe Zirk want to change that. COMPAMED.de asked them about their approach.